

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATIONS 2016 / 2017 ACADEMIC SESSION

COURSE CODE: MTH 325

COURSE TITLE: Mathematical Methods II

DURATION: 2 Hours

Apol

HOD's SIGNATURE

INSTRUCTION:

1. YOU ARE TO ANSWER **FOUR** QUESTIONS FROM THE **FIVE** QUESTIONS ON THE EXAMINATION PAPER.

Question One

1b)

1a) Explain the following terms

State fermat principle of optics

(i)	Geodesic problem	1 Mark
(ii)	Transversality conditions	1 Mark
(iii)	Variation problem	1 Mark
(iv)	Variation principle	1 Mark

2 Marks

1c) Find the curve which minimize $\int_a^b (y^2 + y^{1^2}) dx$ 9 Marks

Question Two

2a) Find the curve which gives the shortest distance between the two points on a plane $I = \int_a^b \sqrt{(1+(y^1)^2)} \, dx$ 7 Marks

2b) State the necessary and sufficient condition for Euler-Lagrange equation. Hence find the $I[y(x)] = \int_a^b x(1+y^{1^2})^{\frac{1}{2}} dx$ integral curve of the Euler-Lagrange equation. 8 Marks

Question Three

- Determine the extrema of the functional $I[y(x)] = \int_a^b f(x, y, y^1) dx$ subjected to the condition that the point $A(x_0, y_0)$ moves on $x^2 + y^2 = 1$ and the other end $B(x_1, y_1)$ lies on a straight line x + y = 4
- 3b) Find the Laplace transform of $\sin 2t \sin 3t \sin 4t$ 5 Marks

Question Four

- 4a) State the Hamilton principle and write the Lagrange equation 2 Marks
- b) A particle of mass 3kg moves on x y plane. The potential energy of the particle as a function is given by $V = 36xy 48x^2$. The particle starts at time t=0 at the point with the position vector (10, 10).
- (i) Write the differential equations describing the motion 3 Marks
- (ii) Solve the equation to determine position of the particle as a function of time 3 Marks

(iii) Find the velocity and acceleration as a function of time

3 Marks

4c) State and prove the convolution theorem. Using the convolution theorem evaluate

$$H(s) = \frac{1}{(s+2)^2 + (s^2 + 1)}$$

4 Marks

Question Five

5a)i Find the
$$L^{-1}\left(\frac{5s+8}{s^2+4}\right)$$

3 Marks

(ii) Find the Laplace transform $f(t) = \sin at$ Using Euler method

3 Marks

(iii) Find the
$$L^{-1}\left(\frac{3}{s-5}\right)$$

2 Marks

Solve the differential equation y''+5y'+6y=0 y(0)=2, y'(0)=3 Using Laplace transform. 7 Marks